Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.10.19.512954

ABSTRACT

Emerging variants of concern (VOCs) are threatening to limit the efficacy of SARS CoV-2 monoclonal antibodies and vaccines currently used in clinical practice; broadly neutralizing antibodies and strategies for their identification are therefore urgently required. Here we demonstrate that broadly neutralizing antibodies can be isolated from peripheral blood mononuclear cells (PBMCs) of convalescent patients using SARS CoV-2 receptor binding domains (RBDs) carrying epitope-specific mutations. This is exemplified by two human antibodies, GAR05, binding to epitope class 1, and GAR12, binding to a new epitope class 6 (located between class 3 and class 5). Both antibodies broadly neutralize VOCs, exceeding the potency of the clinical monoclonal sotrovimab (mAb S309) by orders of magnitude. They also provide potent prophylactic and therapeutic in vivo protection of hACE2 mice against viral challenge. Our results indicate that exposure to Wuhan SARS-CoV-2 induces antibodies that maintain potent and broad neutralization against emerging VOCs using two unique strategies: either by targeting the divergent class 1 epitope in a manner resistant to VOCs (ACE-2 mimicry, as illustrated by GAR05 and mAbs P2C-1F11/S2K14); or alternatively, by targeting rare and highly conserved epitopes, such as the new class 6 epitope identified here (as illustrated by GAR12). Our results provide guidance for next generation monoclonal antibody development and vaccine design.

2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.14.422791

ABSTRACT

ABSTRACT Antibodies against coronavirus spike protein potently protect against infection and disease, however it remains unclear if such protection can be extended to variant coronaviruses. This is exemplified by a set of iconic and well-characterized monoclonal antibodies developed after the 2003 SARS outbreak including mAbs m396, CR3022, CR3014 and 80R, which potently neutralize SARS-CoV-1, but not SARS-CoV-2. Here we explore antibody maturation strategies to change and broaden their specificity, enabling potent binding and neutralization of SARS-CoV-2. Using targeted mutagenesis as well as light chain shuffling on phage, we identified variants with considerably increased affinity and neutralization potential. The most potent antibody, derived from the NIH-developed mAb m396, neutralized live SARS-CoV-2 virus with a half-maximal inhibitory concentration (IC 50 ) of 160 ng/ml. Intriguingly, while many of the matured clones maintained specificity of the parental antibody, new specificities were also observed, which was further confirmed by X-ray crystallography and cryo-electron microscopy, indicating that a limited set of antibodies can give rise to variants targeting diverse epitopes. Our findings open up over 15 years of antibody development efforts against SARS-CoV-1 to the SARS-CoV-2 field and outline general principles for the maturation of antibody specificity against emerging viruses.

SELECTION OF CITATIONS
SEARCH DETAIL